Activite 1 من موقع Activite 1

documentaire

Déduire le mécanisme des échanges gazeux respiratoires au niveau des poumons.

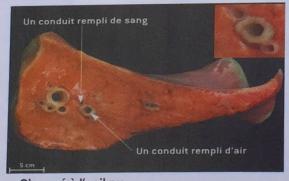
Mécanisme des échanges gazeux respiratoires au niveau des poumons

Au niveau des alvéoles pulmonaires, se réalisent des échanges gazeux respiratoires.

- → Comment les alvéoles pulmonaires favorisent-elles les échanges gazeux respiratoires ?
- → Quel mécanisme permet ces échanges ?

CARACTÉRISTIQUES DES POUMONS COMME SURFACE D'ÉCHANGE

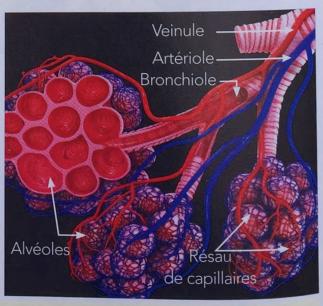
L'appareil respiratoire narine trachée bronches


Moulage des voies aériennes (en blanc) et des vaisseaux sanguins (bleu et rouge)

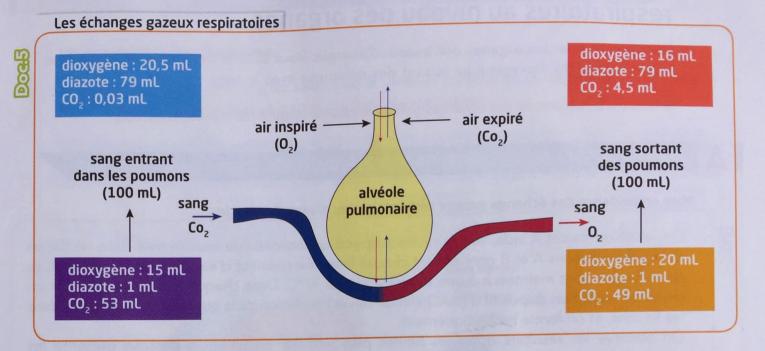
Chaque minute, 5 litres de sang circulent dans les 2 500Km de capillaires de nos poumons ; soit 7 200 litres de sang par jour.

Tissu pulmonaire

bronchioles



a- Observé à l'oeil nu


b- Vue au microscope électronique

Réseau de capillaires à la surface des alvéoles

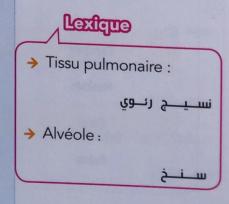
Dans un poumon, il ya environ 700 millions d'alvéoles richement irriguées. Chaque alvéole a un diamètre de 0,25 mm, la surface alors développée est estimée à 200m².

LE MÉCANISME DES ÉCHANGES GAZEUX RESPIRATOIRES AU NIVEAU DES ALVÉOLES PULMONAIRES

Le mécanisme des échange gazeux respiratoires au niveau des alvéoles pulmonaires

Le tableau ci-dessous présente les valeurs de la pression partielle en dioxygène et en dioxyde de carbone au niveau des alvéoles pulmonaires et le sang des capillaires pulmonaires.

Pression partielle (KPa)	Air alvéolaire	Sang entrant dans les poumons (ar- tère pulmonaire)	Sang sortant des poumons (veine pulmonaire)
PO ₂	14	5,3	14
PCO ₂	5,3	6,1	5,3


Kilo pascal = (KPa)

Pistes de travail

- 1. Déterminer les caractéristiques des poumons (Doc1, 2 et 3)
- 2. Déterminer les caractéristiques des alvéoles pulmonaires qui favorisent les échanges respiratoires. (Doc4)
- 3. Comparer la quantité des gaz respiratoires (O2 et CO2) au niveau du sang entrant et du sang sortant des alvéoles ? (Doc5) que peut-on-conclure ?
- 4. Déduire la nécessité du renouvellement de l'air alvéolaire. (Doc5)
- 5. Expliquer le mécanisme des échanges gazeux respiratoires au niveau des alvéoles pulmonaires. (Doc6)

→ Pour conclure :

Montrer le rôle des poumons dans les échanges gazeux respiratoires.

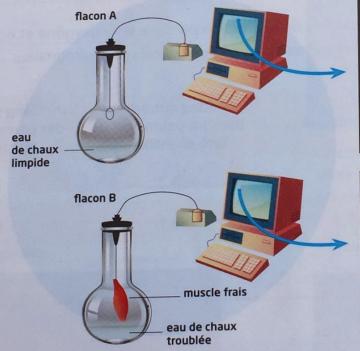
OBJECTIF تم تعميل هذا الملف من موقع OBJECTIF

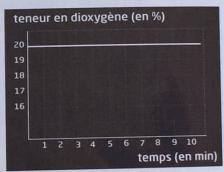
experimentale

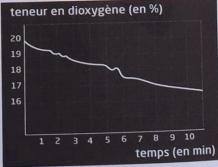
Déduire le mécanisme des échanges gazeux respiratoires au niveau des organes.

Mécanisme des échanges gazeux respiratoires au niveau des organes

Pour fonctionner les organes ont besoin d'énergie. Pour cela ils doivent se procurer des nutriments et du dioxygène en faisant des échanges avec le sang.


→ Quel est le mécanisme des échanges gazeux respiratoires entre les organes et le sang ?


MISE EN ÉVIDENCE DES ÉCHANGES GAZEUX RESPIRATOIRES AU NIVEAU DES ORGANES

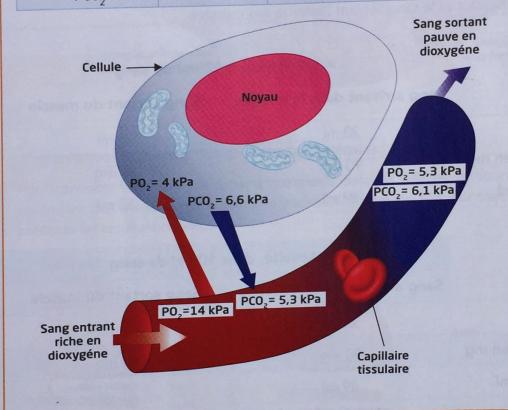

Mise en évidence des échange gazeux respiratoires au niveau du muscle

On laisse un flacon A vide, tandis qu'on suspend un morceau de muscle frais dans un flacon B. Les deux flacons A et B contiennent chacun la même quantité d'eau de chaux, limpide. Ces deux flacons sont maintenus à une température de 37°C. Dans chaque flacon, on introduit un oxymètre relié à un dispositif d'ExAO afin de suivre l'évolution de la quantité de dioxygène dans les flacons, et on ferme hermétiquement.

On observe les résultats quelques heures plus tard. Le document ci-dessous présente les résultats obtenus.

Echanges gazeux entre le sang et les organes

1	ñ	i	١	
١	H		1	
	Ŋ	2	ł	
	1	Į	1	
ĺ		1	١	
6	•		4	


	Quantité de CC	Quantité de CO ₂ dans 100 ml		Quantité d'O ₂ dans 100 ml	
	Sang entrant	Sang sortant	Sang entrant	Sang sortant	
Cerveau	46 ml	52 ml	20 ml	14 ml	
Muscles	46 ml	52 ml	20 ml	15 ml	
Cœur	46 ml	52 ml	20 ml	9 ml	
Reins	46 ml	47 ml	20 ml	18,5 ml	

LE MÉCANISME DES ÉCHANGES GAZEUX RESPIRATOIRES AU NIVEAU DES ORGANES

Les échanges gazeux tissulaires

Le tableau ci-dessous présente les valeurs de la pression partielle du dioxygène et du dioxyde de carbone au niveau des cellules et le sang des capillaires tissulaires

Tissus	Sang entrant dans les tissus (sang artériel)	Sang sortant des tissus (sang veineux)
4	14	5,3
4.4	5.3	6,1
	Tissus 4	Tissus Sang entrant dans les tissus (sang artériel) 4 14 5,3

Les cellules s'approvisionnent en dioxygène à partir du milieu intérieur (sang et lymphe interstitielle) et y rejettent du dioxyde de carbone.

Pistes de travail

- 1. Décrire l'évolution de la quantité du dioxygène dans les deux flacons A et
- 2. Comparer l'aspect de l'eau de chaux dans les deux flacons A et B. (Doc1)
- 3. Que peut-on déduire des résultats de cette expérience ? (Doc1)
- **4.** Comparer la composition en O_2 et en CO_2 du sang entrant et du sang sortant dans chaque organe. (Doc2)
- 5. Déuire la nature des échanges gazeux qui se font au niveau des organes.
- 6. Comparer PO₂ et PCO₂ entre le sang et les tissus que peut-on constater? (Doc3)

→ Pour conclure :

Expliquer le mécanisme des échanges gazeux respiratoires au niveau des organes.

Lexique

Pression partielle:

ضغط جزئي

Échanges gazeux :

تبادلات غازية

Lymphe interstitielle :

لمف بيفرجي

Déduire le rôle du dioxygène et des nutriments dans l'activité des cellules.

Activité cellulaire et utilisation des nutriments

Nos muscles, qui travaillent lors d'un effort physique, et comme tous les autres organes, ils absorbent en permanence du dioxygène (O2) et rejettent du dioxyde de carbone (CO2). Ces échanges gazeux respiratoires permettent probablement à nos muscles de satisfaire leurs besoins lorsqu'ils sont en activité.

→ Comment donc les échanges gazeux respiratoires participent-ils dans la satisfaction des besoins nécessaires au fonctionnement de nos muscles?

LES BESOINS DES CELLULES

Les échanges entre les muscles et le sang suivant l'activité des muscles

ε	F	ŧ	3	
6	μ	Č	b	
	1	ĕ	Ŋ	
	7	Ā	١	
4	à	2	ć	
Í	6	3	ı	

	Au repos, dans 100ml de sang	
	Sang arrivant dans le muscle	Sang sortant du muscle
Quantité d'O, en ml	20 ml	15 ml
Quantité de glucose en mg	90 mg	87 mg
Quantité de CO ₂ en ml	49 ml	53 ml

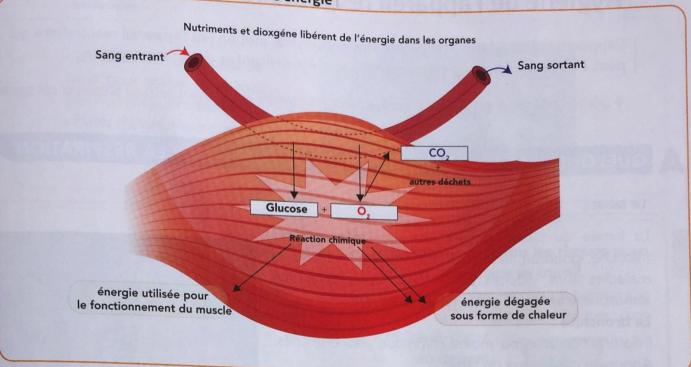
	En Activité, dans 100ml de sang		
	Sang arrivant dans le muscle	Sang sortant du muscle	
Quantité d'O ₂ en ml	20 ml	2 ml	
Quantité de glucose en mg	90 mg	80 mg	
Quantité de CO ₂ en ml	49 ml	65 ml	

Remarque:

Lors d'un effort, les rythmes cardiaque et respiratoire s'accélèrent, la température du corps s'élève légèrement. Alors qu'après l'effort, ils reviennent à leur valeur de repos.

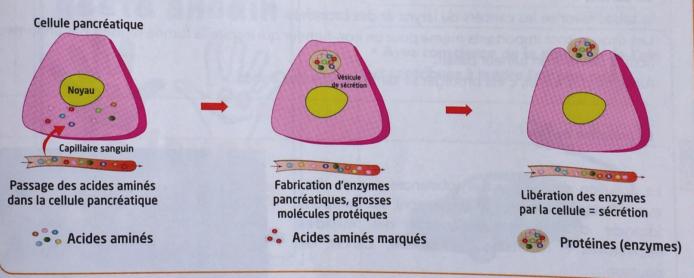
L'UTILISATION DES NUTRIMENTS PAR LES CELLULES

Le glucose source d'énergie cellulaire



L'organisme tire des aliments différentes substances appelées nutriments. Ce sont eux qui assurent le bon fonctionnement de tout l'organisme.

Chaque nutriment a un rôle privilégié : fournir de l'énergie, protéger les cellules, renforcer les os et les dents, aider l'organisme à lutter contre les maladies.


Parmi ceux-ci le glucose est un nutriment qui fournie de l'énergie.

La respiration cellulaire : production d'énergie

L'assimilation : la construction de nouvelles molécules

Pour connaître le devenir de certains nutriments dans les cellules, on fournit à un rat de la nourriture contenant des acides aminés marqués (radioactifs), puis on suit leur trajet. Le document ci-dessous présente les résultats obtenus.

Pistes de travail

- 1. Comparer les quantité d'O_{2'} du glucose et du CO₂ dans le sang arrivant dans le muscle à celles du sang sortant du muscle au repos et en activité et donner une explication aux differences observées. (Doc1)
- 2. Expliquer l'augmentation de la température du corps lors d'un effort physique (Doc 2 et 3)
- 3. Déterminer le rôle des acides aminés (nutriments) au niveau des cellules. (Doc

→ Pour conclure :

Montrer le rôle du dioxygène et des nutriments dans l'activité cellulaire.

<u>Cexique</u>

→ Assimilation :

استبعاب

→ Respiration cellulaire :

تنفس خلوی

Activité عميل هذا الملف من موقع Mocumentaire

Hygiène de l'appareil respiratoire

Adopter un comportement responsable vis à vis de la santé de l'appareil respiratoire.

L'apport en dioxygène, vital pour notre organisme, met en jeu l'appareil respiratoire qui peut être perturbé par des substances nocives présentes dans l'atmosphère.

→ Quelle sont les danger qui affectent l'appareil respiratoire et comment peut-on préserver cet appareil ?

A

QUELQUES FACTEURS SUSCEPTIBLES DE PERTURBER LA RESPIRATION

Le tabac

बिटक्री

La fumée du tabac contient des substances nocives (nicotine, goudron, monoxyde de carbone...). Plusieurs maladies sont induites par la respiration dans une atmosphère enfumée par le tabac telles que :

La bronchite:

inflammation plus ou moins chronique des bronches. Aggravée par l'usage du tabac.

L'emphysème:

Elle se manifeste par des essoufflements rapides dus à la perte de l'élasticité des poumons. La ventilation pulmonaire n'est plus efficace.

le tabac favorise les cancers du larynx et des bronches.

Les risques sont importants même pour un non-fumeur qui inspire la fumée rejetée par un fumeur actif: il devient un fumeur passif.

Ainsi, ne pas fumer, c'est protéger sa santé et celle des autres...

La pollution de l'air

La pollution de l'air par des substances nocives dues aux industries (poussières en suspension), aux transports (dioxyde d'azote) est responsable des maladies respiratoires : Tuberculose pulmonaire, Cancer de poumon...

Le monoxyde de carbone

Lorsque la combustion du bois, du charbon, du carburant, de la cigarette se fait dans un milieu pauvre en dioxygène, il se forme un gaz inodore, incolore et très toxique: c'est le monoxyde de carbone. Le CO dégagé dans l'air se fixe de façon irréversible à l'hémoglobine; ce qui diminue la capacité de transport du dioxygène et entraîne l'asphyxie.

Hb + CO → HbCO Hb : Hémoglobine

B COMMENT PRÉSERVER LA SANTE DE MES POUMONS ?

Actions préventives

- · Si vous fumez, demandez de l'aide pour arrêter. Et si vous êtes non fumeur, restez-le.
- Évitez d'être fumeur passif!

Fumer nuit gravement à votre santé et à celle de votre entourage

· Lavez bien vos mains avec du savon et de l'eau régulierement.

On estime que 80% des maladies infectieuses respiratoires communes comme le rhume et la grippe se propagent par les mains.

 Protégez-vous contre les risques pour la santé pulmonaire au travail.

Si vous êtes souvent exposé à la poussière, à l'amiante ou à des produits chimiques, dans

votre travail, portez équipement de protection, y compris un masque à gaz, et aérez votre lieu de travail.

• Ayez conscience de la pollution de l'air et contribuez à rendre l'air plus sain.

Pistes de travail

- 1. Déterminer les substances nocives à l'appareil respiratoire, leur origine et leur effet sur cet appareil respiratoire. (Doc 1, 2 et 3)
- 2. Proposer quelques conseils pour garder notre appareil respiratoire en bonne santé. (Doc 1, 2 et 3)
- 3. Déterminer quelques mesures à prendre pour préserver l'appareil respiratoire. (Doc 4)

→ Pour conclure :

A l'aide des données proposées ci-dessus, et d'une recherche documentaire, réaliser un dépliant de sensibilisation pour garder les poumons en bonne santé.

Lexique

→ Asphyxie:

اختناق

→ Monoxyde de carbone:

أحادى أكسيـد الكربون